Role for cystic fibrosis transmembrane conductance regulator protein in a glutathione response to bronchopulmonary pseudomonas infection.
نویسندگان
چکیده
The lung maintains an elevated level of glutathione (GSH) in epithelial lining fluid (ELF) compared to serum. The mechanism(s) by which the lung maintains high levels of ELF GSH and factors that modulate them are largely unexplored. We hypothesized that lung cystic fibrosis transmembrane conductance regulator protein (CFTR) modulates GSH efflux in response to extracellular stress, which occurs with lung infections. Mice were challenged intratracheally with Pseudomonas aeruginosa, and on the third day of infection bronchoalveolar lavage fluid was obtained and analyzed for cytokines and antioxidants. Lung tissue antioxidants and enzyme activities were also assessed. P. aeruginosa lung infection increased levels of inflammatory cytokines and neutrophils in the ELF. This corresponded with a marked threefold increase in GSH and a twofold increase in urate levels in the ELF of P. aeruginosa-infected wild-type mice. A twofold increase in urate levels was also observed among lung tissue antioxidants of P. aeruginosa-infected wild-type mice. There were no changes in markers of lung oxidative stress associated with the P. aeruginosa lung infection. In contrast with wild-type mice, the CFTR knockout mice lacked a significant increase in ELF GSH when challenged with P. aeruginosa, and this correlated with a decrease in the ratio of reduced to oxidized GSH in the ELF, a marker of oxidative stress. These data would suggest that the lung adapts to infectious agents with elevated ELF GSH and urate. Individuals with lung diseases associated with altered antioxidant transport, such as cystic fibrosis, might lack the ability to adapt to the infection and present with a more severe inflammatory response.
منابع مشابه
A Review of The Role of The Microbiome on Immune Responses and Its Association With Cystic Fibrosis
In recent years, the microbiome has been recognized as a key regulator of immune responses. Evidence suggests that changes in the microbiome can lead to chronic disease and even exacerbation of the disease. Impairment of innate immunity resulting from microbial incompatibility may worsen host susceptibility to infection and exacerbate chronic lung diseases. Specific microbes play a key role in ...
متن کاملExcessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa.
In cystic fibrosis (CF), defective function of the cystic fibrosis transmembrane conductance regulator (CFTR) in airway epithelial cells and submucosal glands results in chronic pulmonary infection with Pseudomonas aeruginosa. The pulmonary infection incites an intense host inflammatory response, causing progressive suppurative pulmonary disease. Mouse models of CF, however, fail to develop pul...
متن کاملMolecular screening of R117H mutation in non caucasian cystic fibrosis patients in the north of Iran
Cystic fibrosis is an autosomal recessive disease caused by a wide spectrum of mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator protein. These mutations that correlate with different phenotypes, vary in their frequency and distribution in different populations. In this study missense mutation R117H that associated with the different clinical symptoms wa...
متن کاملAnalysis of c.3369+213TA[7-56] and D7S523 microsatellites linked to Cystic Fibrosis Transmembrane Regulator.
Cystic fibrosis (CF) is a life-limiting autosomal recessive disorder affecting principally respiratory and digestive system . It is caused by cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation. The aim of this study was to determine the extent of repeat numbers and the degree of heterozygosity for c.3499+200TA(7_56) and D7S523 located in intron 17b and 1 cM proximal to t...
متن کاملP-192: The Study of Cystic Fibrosis Transmembrane Conductance Regulator Gene Mutations and Polymorphisms in Iranian Patients with Mayer Rokitansky Kuster Hauser Syndrome
Background: Mayer - Rokitansky - Kuster - Hauser (MRKH) syndrome is characterized by congenital aplasia of the uterus and the upper part of the vagina in women showing normal development of secondary sexual characteristics and a normal 46, XX karyotype. Congenital anomaly of the female genital tract, estimated to occur in approximately 1 in every 5,000 females. It is caused by a failure of deve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 72 4 شماره
صفحات -
تاریخ انتشار 2004